3.1 GENÉTICA MENDELIANA
La capacidad que presentan los seres vivos para engendrar a otros seres vivos de características similares, lo que hemos llamado reproducción, es uno de sus atributos más sobresalientes y que con mayor claridad los identifica con respecto a otros seres que llamamos inanimados. La reproducción implica una transmisión de las características propias de los organismos progenitores a su descendencia; tal transmisión de características es lo que se conoce con el nombre de herencia biológica.
3,1,1 LEYES DE MENDEL
3.2 GENÉTICA POSTMENDELIANA
Mendel no conocía la estructura molecular del ADN ni sabia de la existencia de los genes, si pudo detectar su presencia y efectos; denomino ¨factores¨ a los genes y supo que heredan al azar, que algunos se expresan y otros no, que se segregan y recombinan y que se presentan en pares. Sus trabajos fueron tan exactos y descriptivos que aun pueden ser recreados y repetidos, obteniéndose los mismos resultados; por tanto sus enunciados se convirtieron en leyes de la genética.
Con la genética molecular postmendeliana se estudiaron y descubrieron nuevos aspectos de la herencia; se pudo observar que había eventos que ocurrían al margen de las leyes de Mendel como la herencia ligada al sexo.
La herencia postmendeliana esta marcada por el conocimiento de la estructura y función de los genes, el desarrollo de la genética molecular y el avance posterior de la ingeniería genética, que se dio en la década de 1970.
Con la genética molecular postmendeliana se estudiaron y descubrieron nuevos aspectos de la herencia; se pudo observar que había eventos que ocurrían al margen de las leyes de Mendel como la herencia ligada al sexo.
La herencia postmendeliana esta marcada por el conocimiento de la estructura y función de los genes, el desarrollo de la genética molecular y el avance posterior de la ingeniería genética, que se dio en la década de 1970.
3.2.1 HERENCIA LIGADA AL SEXO
En el cariotipo existen dos tipos de cromosomas: los autosomas y los cromosomas sexuales y los cromosomas sexuales en el cariotipo humano son en las mujeres XX y en los hombres XY.
Algunos genes que determinan para caracteres no sexuales se trasmiten a la descendencia ligados a los cromosomas sexuales, fundamentalmente ligados al cromosoma X, por lo que en estos casos se trata de una herencia ligada al sexo.
Los genes ligados al cromosoma X son genes generalmente recesivos y determinan para caracteres no sexuales, por tanto, se trasmiten junto a este cromosoma, siguiendo las leyes de la herencia planteadas por Mendel.
En el proceso de meiosis que ocurre en las células germinales femeninas, se forman los óvulos o gametos femeninos que contienen un cromosoma X, sin embargo, a partir de la división celular por meiosis que ocurre en las células germinales masculinas, se forman dos tipos de espermatozoides, algunos contienen al cromosoma X y otros al cromosoma Y, por consiguiente:
El sexo de la futura descendencia depende del espermatozoide que fecunde al óvulo.
cuadro_herencia_ligada_al_sPara los genes ligados al sexo, las mujeres al poseer en el par de cromosomas sexuales dos cromosomas X, pueden ser para estos caracteres homocigóticas o heterocigóticas, sin embargo, en los hombres que cromosómicamente son XY, para estos caracteres solo pueden ser hemicigóticos, de ahí que los caracteres ligados al cromosoma X se expresen con mayor frecuencia en los hombres que en las mujeres.
Las hembras heredan los genes ligados al cromosoma X por vía materna y paterna, ya que durante la fecundación tanto el óvulo como el espermatozoide aportan un cromosoma X. Los varones heredan los genes ligados al cromosoma X por vía materna, ya que el espermatozoide que fecunda al óvulo aporta un cromosoma sexual Y, por lo que solo reciben los genes ligados al cromosoma X aportados por el óvulo.
3.2.2 ALELOS MULTIPLOS
En el patrón hereditario de las leyes de Mendel se presentan dos fenotipos, en el de dominancia incompleta o herencia intermedia tres, al igual que en codominancia; en alelos múltiples se manifiestan más de tres fenotipos dependiendo del número de alelos presentes en la población.
De acuerdo con el patrón hereditario de las leyes de Mendel cada característica hereditaria es regulada por dos alelos, en contraste con los alelos múltiples en los que una característica hereditaria es regulada por más de dos alelos, por esta razón sólo se pueden estudiar en poblaciones en donde el número de individuos permite la manifestación de estas características, como los grupos sanguíneos en la población humana, el color del pelaje en una población de gatos, o incluso en el color de los ojos en un grupo de moscas de la fruta.
3.2.3 TERAPIA GENÉTICA
La terapia génica consiste en la inserción de genes funcionales ausentes en el genoma de un individuo. Se realiza en las células y tejidos con el objetivo de tratar una enfermedad o realizar un marcaje.
La técnica todavía está en desarrollo, motivo por el cual su aplicación se lleva principalmente a cabo dentro de ensayos clínicos controlados, y para el tratamiento de enfermedades severas o bien de tipo hereditario o adquirido. Al principio se planteó sólo para el tratamiento de enfermedades genéticas, pero hoy en día se plantea ya para casi cualquier enfermedad.
Entre los criterios para elegir este tipo de terapia se encuentran:
Enfermedad letal sin tratamiento.
La causa sea un único gen que esté ya clonado.
La regulación del gen sea precisa y conocida.
3.3.2 MUTACIÓN
Una mutación es un cambio en el ADN, el material hereditario de los seres vivos. El ADN de un organismo influye en su aspecto físico, en su comportamiento y en su fisiología — en todos los aspectos de su vida. Por lo tanto, un cambio en el ADN de un organismo puede producir cambios en todos los aspectos de su vida.
3,3,2,1 CROMOSOMICA
3.3.2.3 ANEUPLOIDE
Un individuo es aneuploide cuando su constitución cromosómica no comprende un número exacto de genomios completos. Un individuo aneuploide lo puede ser por defecto o por exceso, es decir puede tener cromosomas de más o de menos, esto supone un desequilibrio que generalmente los animales soportan peor que las plantas. La aneuploidía, ocurrida de forma espontánea, es frecuente en la naturaleza, y dependiendo de los cromosomas implicados el organismo es más o menos viable. En la especie humana son bastante frecuentes las aneuploidías en nacidos vivos, y las más compatibles con la vida suelen originar trastornos fisiológicos, (ej. Síndrome de Down), las que afectan a los cromosomas sexuales (Turner, duplo Y, etc), son las que aparentemente menos alteraciones producen.
Los individuos normales son disómicos, y los aneuploides se clasifican siguiendo la siguiente terminología:
- Monosómico.- Individuo al que le falta un cromosoma completo. Su dotación cromosómica es (2n-1), y en meiosis forma (n-1) bivalentes y un univalente.
- Nulisómico.- Individuo al que le falta una pareja cromosómica de su complemento cromosómico. Su dotación cromosómica es (2n-2) y en meiosis forma (n-1) bivalentes.
- Trisómico.- Es un individuo que tiene un cromosoma extra. Su dotación cromosómica es (2n+1). mosoma central será el cromosoma crítico.
- Tetrasómico.- Es el individuo que tiene 4 cromosomas iguales. En meiosis formará (n-1) bivalentes y un tetravalente.
Los aneuploides se utilizan en estudios citogenéticos, como marcadores, o para la localización de genes, ya que sus segregaciones difieren de las mendelianas. En los aneuploides por exceso, se puede aplicar los mismos calculos que en la herencia polisómica vista en los poliploides.
Además de la clasificación vista anteriormente, pueden existir indivuos aneuploides por combinación de varios tipos, como doble monosómico, mono-trisómico, etc.
3.3.2.4 POLIPLOIDE
Son alteraciones en las que el organismo recibe, en su lugar de dos juegos de cromosomas, tres o más, en lugar de ser diploide puede ser triploide, tretaploide, etc. En el casodel ser humano esta condición no es viable; un individuo que recibe tres juegos de cromosomas, es decir, sesenta y nueve, no logra nacer porque las alteraciones que se producen son letales. Encambio, en las plantas es frecuente observar este fenómeno, propiciado incluso por los mismos agricultores. Por ejemplo el trigo que se produce actualmente es hexaploide y contiene seis juegos decromosomas.
3.3.2.5 AGENTES MUTAGENICOS
Agentes Mutagénicos
En biología, un mutágeno es un agente físico, químico o biológico que altera o cambia la información genética (usualmente ADN) de un organismo y ello incrementa la frecuencia de mutaciones por encima del nivel natural. Cuando numerosas mutaciones causan el cáncer adquieren la denominación de carcinógenos. No todas las mutaciones son causadas por mutágenos. Hay "mutaciones espontáneas", llamadas así debido a errores en la reparación y la recombinación del ADN.
Tipos de Agentes Mutagénicos
- Mutágenos químicos: son compuestos químicos capaces de alterar las estructuras del ADN de forma brusca, como por ejemplo el ácido nitroso (agente desaminizante), brominas y algunos de sus compuestos.
- Mutágenos físicos: son radiaciones que pueden alterar la secuencia y estructura del ADN. Son ejemplos la radiación ultravioleta que origina dímeros de pirimidina (generalmente de timina), y la radiación gamma y la alfa que son ionizantes. También se considerar agentes físicos los ultrasonidos,con 400.000 vibraciones por segundo,que han inducido mutaciones en Drosophila y en algunas plantas superiores, y centrifugación, que también producen variaciones cromosómicas estructurales.
- Mutágenos biológicos: son aquellos organismos “vivos” que pueden alterar las secuencias del material genético de su hospedador; como por ejemplo; virus, bacterias y hongos. Son ejemplo los transposones (fragmentos autónomos de ADN).
Mutágenos Físicos
Aquí se incluyen las radiaciones atómicas, Rayos X producen esterilidad en plantas, animales y hombre. También afectan a los tejidos como huesos, nervios, músculos, hígado, riñón, etc. Además la radiación es un proceso físico mediante el cual la enegía viaja por el espacio. Hay 2 formas principales de esta energía:
- Electromagnética: se describe como ondas de energía eléctrica. Por ejemplo: Rayos gamma, Rayos X, Radiación Ultravioleta.
- Cospuscular: está formado por partículas atómicas y subatómicas que se mueven a grandes velocidades y provocan daños cuando chocan con otras partículas incluyendo las moléculas biológicas. Por ejemplo: partículas alfa y pastículas beta.
Fuentes de la radiación
El simple hecho de estar vivos nos expone a radiaciones que pueden causar mutación. Estamos expuestos constantemente a las radiaciones. Los efectos biológicos de la radiación consisten en alteraciones a diversos niveles de organización, como son las moléculas, los orgánulos y las células.
Las posibles fuentes de mutágenos biológicos pueden ser todos los preparados de naturaleza biológica utilizados en medicina profiláctica o terapeutica tales como vacunas, antitoxinas,sangre, suero y antígenos. Los mutágenos biológicos potenciales pueden ser microorganismos, especialmente virus, y algunos agentes químicos. En el caso de los virus se ha demostrado que pueden producir anomalías cromosómicas, desde la simple rotura, a la pulverización de los cromosomas, por ello la vacunación con virus vivos puede implicar un riesgo potencial. Las moléculas de ADN recombinante tienen un riesgo potencial debido principalmente a que muchos tipos de ADN de células animales contienen secuencias comunes a virus tumorales, el añadir ADN de origen animal a estos nuevos sistemas de replicación o clonado del ADN podría significar la proliferación incontrolada de una información genética cancerígena.
No hay comentarios:
Publicar un comentario